

Impeder Rods For High Frequency Welding Of Tubes And Pipes.

Vision Statement

"To Excel in what we do, to Inspire in how we do."

Mission Statement

Customer Delight = Q*P*T+ Communication,

Where Q is Quality Level (seen through eyes of our customers), P is Price Level (seen through eyes of our customers) and T is the response time or delivery time (seen through eyes of our customers).

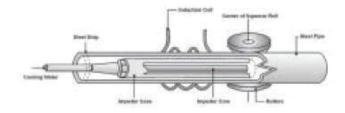
Undoubtedly the factors Q, P and T together results in customer satisfaction. But above these 3 key factors is the communication which binds them together to produce delightful experience for our customers.

Values

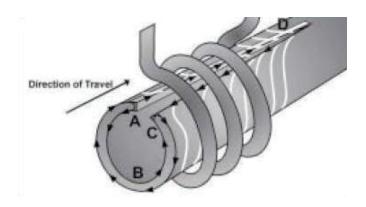
Focus, Perseverance, Professional Commitment & Ethics and Hard work are the only keys to Success in long run.

Parker Electronics Pvt. Ltd.

Established in 1988, Parker Electronics Private Limited is the Authorized Distributor for 3M, Mahindra CIE, TDK (Epcos) products. We hold the legacy of a successful past laced with consistency, and a path leading to incredible growth.


We are providing our clients with high quality products in Ferrite cores for Transformers and Chokes application, Welding rods, Electrical Insulation Solutions, Energy Related Solutions, Passive Fire Solutions, Commercial Cleaning Solutions, Matting System, Floor Protections etc.

With over 34 years of Experience in Electrical products and processes, we deliver practical and viable solutions and products for customer specific requirements, with a promise of QUALITY, DURABILITY AND SAFETY.



In HIGH FREQUENCY TUBE WELDING PROCESS, mild steel strip of specific width is passed through several sets of steel rolls. The steel strip is converted into an open seam tubular shape. At this stage, the tubular shape is passed through a high frequency induction coil. The coil works as a primary and the open seam tube acts as one turn secondary. The induced current density is highest at the edges and results into rapid heating of these edges. The subsequent pressure rolls press the open red hot seams together to form a butt weld joint. Ferrite rods kept inside the tube aid the process of welding by improving its efficiency.

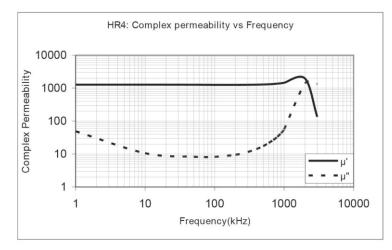
The Impeder is constructed of Ferrite material and is an essential accessory for use in high frequency welding of tubes and pipes. Mahindra CIE - MPD has developed a rugged performance ferrite core material designated HR4B / HR4 / HR-5 This material best meets the demanding requirements of high frequency welding. The Impeder lowers the reluctance of the magnetic path, thereby saving energy and improving overall process efficiency. HR4B / HR4 / HR-5 cores provide an ideal magnetic path even at high temperatures. High saturation flux combined with high resistance reducing eddy current losses improves mill efficiency. It's high density construction adds the mechanical strength for long life in the severe operating environment in a steel tube mill.

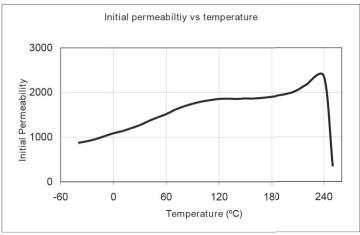
THE PROCESS

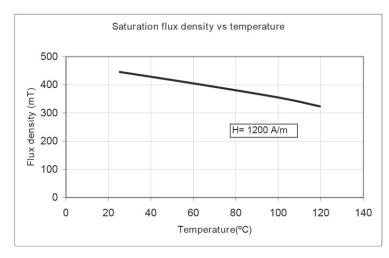
In induction welding, the high frequency magnetic field from the coil induces an alternating current on the outer side of the open seam tube. The current can take either of two parallel return paths in the vee (ADC) or around the inside surface (ABC). Ferrite impeder core reduces the current flowing around the inside surface and thus enhances the "useful" vee current (ADC), which helps heating.

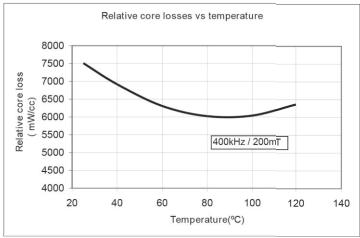
IMPROVE MILL EFFICIENCY

Through a constant interaction with customers Mahindra CIE - MPD has developed new improved material grade HR4B / HR-4 / HR-5 which help improve mill efficiency.

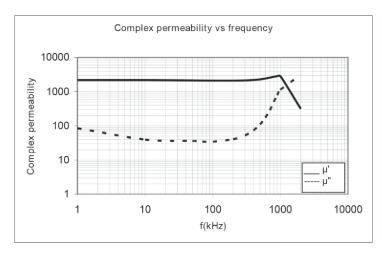

HIGHER RESISTIVITY

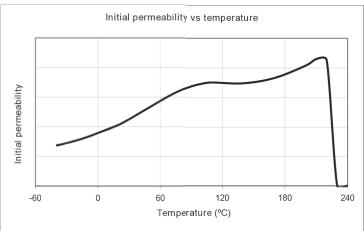

Eddy current losses and resultant heating of ferrite is reduced by increased resistivity of ferrite.

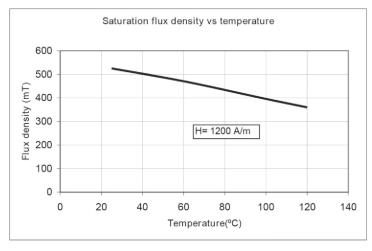


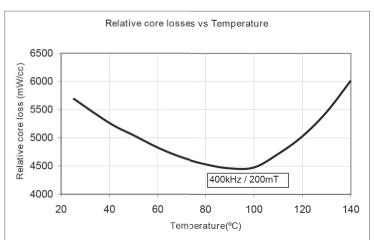

HR-4: Ferrite Impeder Grade

Properties	Symbol	Unit	Test condition	Values
Initial permeability (±25%)	μi		0.1mT, 25°C	1200
Flux density (min)	Bs	mT	1200A/m, 25°C	440
riax density (min)			1200A/m, 100°C	350
Coercive Field (max)	Hc	A/m	10kHz, 25°C	10
Curie Temperature (min)	Tc	°C		240
Density (min)	d	kg/m ³	25°C	4800
Resisitivity (min)	ρ	Ωm	25°C	4
Dowerless (may)	Pc	mW/cc	400kHz/200mT/25 ⁰ C	10000
Powerloss (max)	PC	IIIVV/CC	400kHz/200mT/100 ⁰ C	7000




All measurements made on Toroid OD= 30mm, ID=20mm Ht=10mm.




HR-4B: Ferrite Impeder Grade

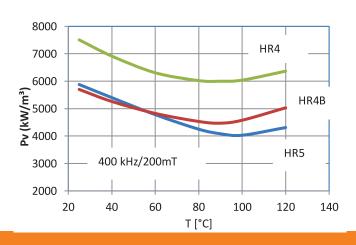
Properties	Symbol	Unit	Test condition	Values
Initial permeability (±25%)	μi		0.1mT, 25°C	1800
Flux density (min)	Bs	mT	1200A/m, 25°C	500
riax density (min)			1200A/m, 100°C	400
Coercive Field (max)	Hc	A/m	10kHz, 25°C	10
Curie Temperature (min)	Tc	°C		210
Density (min)	d	kg/m ³	25°C	4800
Resisitivity (min)	ρ	Ωm	25°C	4
Dawadaa (rasy)	De	ma\A//a.a	400kHz/200mT/25 ⁰ C	8000
Powerloss (max)	Pc	mW/cc	400kHz/200mT/100°C	6000

All measurements made on Toroid OD= 30mm, ID=20mm Ht=10mm.

NEW FERRITE MATERIAL FOR WELDING APPLICATIONS - HR5 () Mahindra CIE

MCIE has developed a material specifically designed to meet the demanding properties required for high frequency welding rod applications. New HR5 material, optimized for this applications.

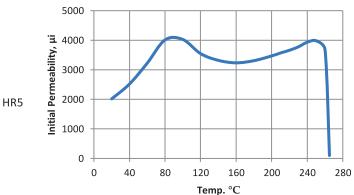
HR5 grade is a manganese-zinc ferrite material that offers considerable improvements over standard material.


- ➤ A high permeability material to improve the magnetic flux concentration.
- ➤ High flux density in combination with high Curie temperature allows for the highest power welding applications.
- > The lower the losses in the ferrite the less cooling required.
- ➤ High resistivity of material also reduces eddy current losses in impeder core, which would again lead to heating up and lower saturation.

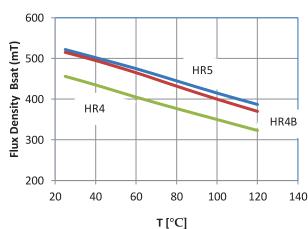
Better Power Loss:

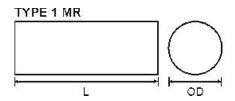
Low core loss density at high frequency reduces heating of the core.

Variation in core loss	400 KHz/200 mT
variation in core ioss	@ 100 °C
HR4	7000 kW/m³
HR4B	6000 kW/m³
HR5	5500 kW/m³


In HR5 material, power losses are improved by 15% over the HR4B material.

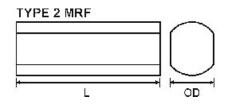
HR4, HR4B & HR5 - Material Characteristics


SYMBOL	UNIT	CONDITIONS	HR4	HR4B	HR5
μ_{i}					
(±25%)		25 °C, ≤10 kHz, 0.25 mT	1200	2000	2300
		25 °C, 10 kHz, 1200A/m	440	500	510
Bs	mT	100 °C, 10 kHz, 1200A/m	350	400	410
		100 °C, 400 kHz, 200 mT	7000	6000	5500
		100 °C, 500 kHz, 50 mT			250
		100 °C, 500 kHz, 100 mT			<2500
Pv	Kw/m3	100 °C, 1MHz, 50 mT			<1500
Тс	°C		240	210	230
ρ	Ωm	DC, 25 °C	4	4	8
Density	kg/m³		4800	4800	4850

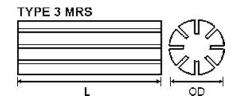

Curie Temperature: Curie temperature >230 °C, safe to use with higher temperature and the properties must be optimized for this environment.

Saturation Flux Density vs Temperature:

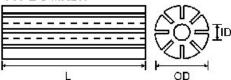
High saturation flux density Bsat, is suitable for the most demanding (highest power) welding applications.



	OD		L	.engt	h	No of Slots	Type of construction
3	±	0.3	200	±	1.0	6	One piece
4	±	0.3	200	±	1.0	6	One piece
5	±	0.3	200	±	1.0	6	One piece
6	±	0.3	200	+I	1.0	6	One piece
7	±	0.3	200	±	1.0	6	One piece
8	±	0.3	200	±	1.0	6	One piece
9	±	0.3	200	±	1.0	6	One piece
10	±	0.4	200	±	1.0	6	One piece
12	±	0.4	200	H	1.0	8	One piece
13	±	0.4	200	±	1.0	8	One piece
15	±	0.5	200	±	1.0	8	One piece
18	±	0.6	200	±	1.0	8	One piece
19	±	0.6	200	±	1.0	8	One piece
21	±	0.6	200	±	1.0	8	One piece
22	±	0.65	200	H	1.0	8	One piece
23	±	0.65	200	±	1.0	8	8 piece joined
25	±	0.65	200	±	1.0	8	8 piece joined
27	±	0.7	200	±	1.0	8	8 piece joined
30	±	1.0	200	±	1.0	8	8 piece joined


MRF TYPE (SOLID FLAT SIDED ROD)

	OD		L	.engt	:h	Type of
					construction	
3	±	0.3	200	±	1.0	One piece
4	±	0.3	200	±	1.0	One piece
5	±	0.3	200	±	1.0	One piece
6	±	0.3	200	±	1.0	One piece
7	±	0.3	200	±	1.0	One piece
8	±	0.3	200	±	1.0	One piece
9	±	0.3	200	±	1.0	One piece
10	±	0.4	200	±	1.0	One piece
11	±	0.4	200	±	1.0	One piece
12	±	0.4	200	±	1.0	One piece
13	±	0.4	200	±	1.0	One piece
14	±	0.4	200	±	1.0	One piece
15	±	0.5	200	±	1.0	One piece
16	±	0.5	200	±	1.0	One piece
17	±	0.6	200	±	1.0	One piece
18	±	0.6	200	±	1.0	One piece
20	±	0.6	200	±	1.0	One piece
22	±	0.7	200	±	1.0	One piece
27	±	0.7	200	±	1.0	One piece



	OD		L	.eng	th	No of Slots	Type of Construction
3	±	0.3	200	±	1.0	6	One piece
4	±	0.3	200	±	1.0	6	One piece
5	±	0.3	200	±	1.0	6	One piece
6	±	0.3	200	±	1.0	6	One piece
6.5	±	0.7	200	±	1.0	6	One piece
7	±	0.3	200	±	1.0	6	One piece
7.5	±	0.3	200	±	1.0	6	One piece
8	±	0.3	200	±	1.0	6	One piece
8.5	±	0.3	200	±	1.0	6	One piece
9	±	0.3	200	±	1.0	6	One piece
10	±	0.4	200	±	1.0	6	One piece
11	±	0.4	200	±	1.0	8	One piece
12	±	0.4	200	±	1.0	8	One piece
12.7	±	0.4	200	±	1.0	8	One piece
13	±	0.4	200	±	1.0	8	One piece
14	±	0.4	200	±	1.0	8	One piece
15	±	0.5	200	±	1.0	8	One piece
16	±	0.5	200	±	1.0	8	One piece
17	±	0.6	200	±	1.0	8	One piece
18	±	0.6	200	±	1.0	8	One piece
19	±	0.6	200	±	1.0	8	One piece
20	±	0.6	200	±	1.0	8	One piece
21	±	0.6	200	±	1.0	8	One piece
22	±	0.65	200	±	1.0	8	One piece
23	±	0.65	200	±	1.0	8	8 piece joined
24	±	0.65	200	±	1.0	8	8 piece joined
25	±	0.65	200	±	1.0	8	8 piece joined
26	±	0.7	200	±	1.0	8	8 piece joined
27	±	0.7	200	±	1.0	8	8 piece joined
28	±	8.0	200	±	1.0	8	8 piece joined
29	±	8.0	200	±	1.0	8	8 piece joined
30	±	1.0	200	±	1.0	8	8 piece joined
32	±	1.0	200	±	1.0	8	8 piece joined

TYPE 5 MRSH

MRSH type (Hollow Fluted type)

	OD			ID		ı	Lengt	h	No of	Type of
								Slots	construction	
6	±	0.3	2	±	0.3	200	±	1	6	One piece
6	±	0.3	3	±	0.3	200	±	1	6	One piece
7	±	0.3	2	±	0.3	200	±	1	6	One piece
7	±	0.3	3	±	0.3	200	±	1	6	One piece
7	±	0.3	4	±	0.3	200	±	1	6	One piece
8	±	0.3	2	±	0.3	200	±	1	6	One piece
8	±	0.3	3	±	0.3	200	±	1	6	One piece
8	±	0.3	4	±	0.3	200	±	1	6	One piece
9	±	0.4	2	±	0.3	200	±	1	6	One piece
9	±	0.4	3	±	0.3	200	±	1	6	One piece
9	±	0.4	4	±	0.3	200	±	1	6	One piece
9	±	0.4	5	±	0.3	200	±	1	6	One piece
10	±	0.4	3	±	0.3	200	±	1	8	One piece
10	±	0.4	4	±	0.3	200	±	1	8	One piece
10	±	0.4	5	±	0.3	200	±	1	8	One piece
10	±	0.4	6	±	0.3	200	±	1	8	One piece
11	±	0.4	3	±	0.3	200	±	1	8	One piece
11	±	0.4	4	±	0.3	200	±	1	8	One piece
11	±	0.4	5	±	0.3	200	±	1	8	One piece
12	±	0.4	2	±	0.3	200	±	1	8	One piece
12	±	0.4	3	±	0.3	200	±	1	8	One piece
12	±	0.4	5	±	0.3	200	±	1	8	One piece
12	±	0.4	6	±	0.3	200	±	1	8	One piece
12	±	0.4	7	±	0.4	200	±	1	8	One piece
13	±	0.4	2	±	0.3	200	±	1	8	One piece
13	±	0.4	3	±	0.3	200	±	1	8	One piece
13	±	0.4	4	±	0.3	200	±	1	8	One piece
13	±	0.4	5	±	0.3	200	±	1	8	One piece
13	±	0.4	6	±	0.3	200	±	1	8	One piece
13	±	0.4	7	±	0.4	200	±	1	8	One piece
14	±	0.4	3	±	0.3	200	±	1	8	One piece
14	±	0.4	4	±	0.3	200	±	1	8	One piece
14	±	0.4	5	±	0.3	200	±	1	8	One piece
14	±	0.4	6	±	0.3	200	±	1	8	One piece
14	±	0.4	7	±	0.4	200	±	1	8	One piece
15	±	0.5	3	±	0.3	200	±	1	8	One piece
15	±	0.5	4	±	0.3	200	±	1	8	One piece
15	±	0.5	5	±	0.3	200	±	1	8	One piece
15	±	0.5	6	±	0.3	200	±	1	8	One piece
15	±	0.5	7	±	0.4	200	±	1	8	One piece
15	±	0.5	9	±	0.4	200	±	1	8	One piece

	OD			ID			Lengt	h	No of	Type of
										construction
16	±	0.5	3	±	0.3	200	±	1	8	One piece
16	±	0.5	4	±	0.3	200	±	1	8	One piece
16	±	0.5	5	±	0.3	200	±	1	8	One piece
16	±	0.5	5	±	0.3	200	±	1	8	One piece
16	±	0.5	6	±	0.4	200	±	1	8	One piece
16	±	0.5	7	±	0.4	200	±	1	8	One piece
16	±	0.5	8	±	0.4	200	±	1	8	One piece
17	±	0.6	3	±	0.3	200	±	1	8	One piece
17	±	0.6	4	±	0.3	200	±	1	8	One piece
17	±	0.6	5	±	0.3	200	±	1	8	One piece
17	±	0.6	7	±	0.4	200	±	1	8	One piece
17	±	0.6	8	±	0.4	200	±	1	8	One piece
18	±	0.6	3	±	0.3	200	±	1	8	One piece
18	±	0.6	5	±	0.3	200	±	1	8	One piece
18	±	0.6	6	±	0.3	200	±	1	8	One piece
18	±	0.6	8	±	0.4	200	±	1	8	One piece
18	±	0.6	9	±	0.4	200	±	1	8	One piece
19	±	0.6	3	±	0.3	200	±	1	8	One piece
19	±	0.6	6	±	0.3	200	Ŧ	1	8	One piece
19	±	0.6	8	±	0.4	200	±	1	8	One piece
19	±	0.6	9	±	0.4	200	±	1	8	One piece
19	±	0.6	11	±	0.4	200	±	1	8	One piece
20	±	0.6	3	±	0.3	200	±	1	8	One piece
20	±	0.6	6	±	0.3	200	±	1	8	One piece
20	+I	0.6	10	+1	0.4	200	±	1	8	One piece
20	±	0.6	11	±	0.4	200	±	1	8	One piece
21	±	0.6	3	±	0.3	200	±	1	8	One piece
21	±	0.6	4	±	0.3	200	±	1	8	One piece
21	±	0.6	6	±	0.3	200	±	1	8	One piece
21	±	0.6	10	±	0.4	200	±	1	8	One piece
22	±	0.7	3	±	0.3	200	±	1	8	One piece
22	±	0.7	6	±	0.3	200	±	1	8	One piece
22	±	0.7	8	±	0.4	200	±	1	8	One piece
22	±	0.7	9	±	0.4	200	±	1	8	One piece
22	±	0.7	14	±	0.5	200	±	1	8	One piece
23	±	0.7	2	±	0.2	200	±	1	8	One piece
18.5	±	0.6	11	±	0.4	200	±	1	8	8 piece joined
20	±	0.6	3	±	0.3	200	±	1	8	8 piece joined
20	±	0.5	6	±	0.3	200	±	1	8	8 piece joined
21	±	0.6	3	±	0.3	200	±	1	8	8 piece joined
21	±	0.6	10	±	0.4	200	±	1	8	8 piece joined
21	±	0.6	10.5	±	0.4	200	±	1	8	8 piece joined
21	±	0.5	13	±	0.5	200	±	1	8	8 piece joined
21	±	0.5	14	±	0.5	200	±	1	8	8 piece joined
22	±	0.65	3	±	0.3	200	±	1	8	8 piece joined
22	±	0.65	6	±	0.3	200	±	0.5	8	8 piece joined
22	±	0.65	10	±	0.4	200	±	1	8	8 piece joined
22	±	0.65	11	±	0.4	200	±	1	8	8 piece joined
22	±	0.7	14	±	0.5	200	±	1	8	8 piece joined

	OD		ID				Lengt	:h	No of	Type of
									Slots	construction
23	±	0.7	3	±	0.3	200	±	1	8	8 piece joined
23	±	0.5	6	±	0.3	200	±	1	8	8 piece joined
23	±	0.7	11	±	0.4	200	±	1	8	8 piece joined
23	±	0.7	11.5	±	0.4	200	±	1	8	8 piece joined
23	±	0.5	13	±	0.5	200	±	1	8	8 piece joined
24	±	0.7	3	±	0.3	200	±	1	8	8 piece joined
24	±	0.7	6	±	0.3	200	±	1	8	8 piece joined
24	±	0.7	8	±	0.3	200	±	1	8	8 piece joined
24	±	0.7	10	±	0.4	200	±	1	8	8 piece joined
24	±	0.7	12	±	0.4	200	±	1	8	8 piece joined
24	±	0.7	13		0.5	200	±	1	8	8 piece joined
25	±	0.7	3	±	0.3	200		1	8	
25			6	±	0.3	200	±		8	8 piece joined
	±	0.7		±			±	1		8 piece joined
25	±	0.7	10	±	0.4	200	±	1	8	8 piece joined
25	±.	0.7	12	±	0.5	200	±	1	8	8 piece joined
26	±	0.7	3	±	0.3	200	±	1	8	8 piece joined
26	±	0.7	6	±	0.3	200	±	1	8	8 piece joined
26	±	0.7	13	±	0.5	200	±	1	8	8 piece joined
26	±	0.7	16	±	0.5	200	±	1	8	8 piece joined
27	±	0.7	3	±	0.3	200	±	1	8	8 piece joined
27	±	0.7	6	±	0.3	200	±	1	8	8 piece joined
27	±	0.5	8	±	0.4	200	±	1	8	8 piece joined
27	±	0.7	11	±	0.4	200	±	1	8	8 piece joined
27	±	0.7	13	±	0.5	200	±	1	8	8 piece joined
27	±	0.7	14	±	0.5	200	±	1	8	8 piece joined
28	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
28	±	8.0	10	±	0.4	200	±	1	8	8 piece joined
28	±	8.0	14	±	0.5	200	±	1	8	8 piece joined
29	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
29	±	8.0	10	±	0.4	200	±	1	8	8 piece joined
29	±	8.0	14	±	0.5	200	±	1	8	8 piece joined
30	±	8.0	3	±	0.3	200	±	1	8	8 piece joined
30	±	8.0	6	±	0.3	200	±	1	8	8 piece joined
30	±	8.0	10	±	0.4	200	±	1	8	8 piece joined
30	±	8.0	12	±	0.5	200	±	0.5	8	8 piece joined
30	±	0.8	14	±	0.5	200	±	1	8	8 piece joined
30	±	0.8	15	±	0.5	200	±	1	8	8 piece joined
31	±	0.8	3	±	0.3	200	±	1	8	8 piece joined
31	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
31	±	0.8	10	±	0.4	200	±	1	8	8 piece joined
32	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
32	±	0.8	10	±	0.4	200	±	1	8	8 piece joined
32	±	0.8	12	±	0.5	200	±	1	8	8 piece joined
32	±	0.8	16	±	0.5	200	±	1	8	8 piece joined
33	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
33	±	0.8	10	±	0.4	200	±	1	8	8 piece joined
33	±	0.8	14	±	0.5	200	±	1	8	8 piece joined
33	±	0.8	15	±	0.5	200	±	1	8	8 piece joined
50	_	0.0	.0	_	0.0	1		L '	,	o pioco joiriou

	OD		ID Le				Lengt	ength No of Ty		
									Slots	construction
34	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
34	±	8.0	12	±	0.5	200	±	1	8	8 piece joined
34	±	8.0	17	±	0.5	200	±	1	8	8 piece joined
34	±	8.0	20	±	0.6	200	±	1	8	8 piece joined
35	±	8.0	6	±	0.3	200	±	1	8	8 piece joined
35	±	8.0	15	±	0.5	200	±	0.5	8	8 piece joined
35	±	8.0	17	±	0.5	200	±	1	8	8 piece joined
36	±	8.0	3	±	0.3	200	±	1	8	8 piece joined
36	±	8.0	6	±	0.3	200	±	1	8	8 piece joined
36	±	8.0	18	±	0.5	200	±	1	8	8 piece joined
37	±	8.0	3	±	0.3	200	±	1	8	8 piece joined
37	±	8.0	15	±	0.5	200	±	1	8	8 piece joined
37	±	8.0	18	±	0.5	200	±	1	8	8 piece joined
38	±	0.8	6	±	0.3	200	±	1	8	8 piece joined
38	±	8.0	12	±	0.5	200	±	1	8	8 piece joined
38	±	8.0	19	±	0.5	200	±	1	8	8 piece joined
39	±	8.0	6	±	0.3	200	±	1	8	8 piece joined
39	±	8.0	12	±	0.5	200	±	1	8	8 piece joined
39	±	8.0	19	±	0.5	200	±	1	8	8 piece joined
39	±	8.0	20	±	0.6	200	±	1	8	8 piece joined
40	±	8.0	6	±	0.3	200	±	1	8	8 piece joined
40	±	8.0	12	±	0.5	200	±	1	8	8 piece joined
40	±	1.2	20	±	0.6	200	±	1	8	8 piece joined
42	±	1.2	6	±	0.3	200	±	1	8	8 piece joined
42	±	8.0	18	±	0.5	200	±	1	8	8 piece joined
42	±	1.2	20	±	0.6	200	±	0.5	8	8 piece joined
42	±	1.2	21	±	8.0	200	±	1	8	8 piece joined
43	Ŧ	1.2	22	±	8.0	200	±	1	8	8 piece joined
44	±	1.2	6	±	0.3	200	±	1	8	8 piece joined
44	Ŧ	1.2	22	±	8.0	200	±	1	8	8 piece joined
45	Ŧ	1.2	20	±	0.6	200	±	3	8	8 piece joined
46	Ŧ	1.2	18	±	0.5	200	H	1	8	8 piece joined
46	±	1.2	23	±	8.0	200	±	1	8	8 piece joined
48	Ŧ	1.2	20	±	0.6	200	H	1	8	8 piece joined
48	±	1.2	24	±	8.0	200	±	1	8	8 piece joined
50	±	1.2	25	±	8.0	200	H	1	8	8 piece joined
51	±	1.2	26	±	8.0	200	±	1	8	8 piece joined
54	Ŧ	1.2	6	±	0.3	200	H	1	8	8 piece joined
55	±	1.2	6	±	0.3	200	±	1	8	8 piece joined
55	±	1.2	20	±	0.6	200	H	0.5	8	8 piece joined
55	±	1.2	25	±	8.0	200	±	1	8	8 piece joined
55	±	1.2	27	±	8.0	200	±	1	8	8 piece joined
56	±	1.2	28	±	0.8	200	±	1	8	8 piece joined
57	±	1.2	29	±	8.0	200	±	1	8	8 piece joined
58	±	1.2	29	±	8.0	200	±	1	8	8 piece joined
60	±	1.2	30	±	8.0	200	±	1	8	8 piece joined
62	±	1.2	31	±	8.0	200	±	1	8	8 piece joined
65	±	1.2	32	±	8.0	200	±	1	8	8 piece joined
70	±	1.2	35	±	8.0	200	H	1	8	8 piece joined

MRSH TYPE (HOLLOW FLUTED ROD)

	OD		ID			L	Length			Type of
									Slots	construction
73	±	1.2	36	±	1.0	200	±	1	8	8 piece joined
75	±	1.2	35	±	8.0	200	±	1	8	8 piece joined
80	±	1.2	40	±	1.0	200	±	1	8	8 piece joined
85	±	1.2	42	±	1.0	200	±	1	8	8 piece joined
85	±	1.2	42	±	1.0	200	±	1	8	8 piece joined
90	±	1.2	45	±	1.0	200	±	1	8	8 piece joined
95	±	1.2	48	±	1.0	200	±	1	8	8 piece joined
100	±	1.2	50	±	1.0	200	±	1	8	8 piece joined
102	±	1.2	52	±	1.0	200	±	1	8	8 piece joined

Authorised Distributor

PARKER ELECTRONICS PVT. LTD

59/1/1, Industrial Area, Site - 4 Sahibabad, Ghaziabad - 201010, Uttar Pradesh, India Contact.: +91 120 4793777, 9350519111, 8383851089
E-mail: vinod@parkergroup.in | info.pepl@parkergroup.in